不用激光雷达只用摄像头也能实现无人驾驶?

盖世汽车 中字

有了这些数据之后,Google可以训练出更精确的“点击模型”,而点击模型贡献了今天搜索排序至少60%到80%的权重,这将吸引更多的用户,整个过程是一个典型的不断自我强化的正反馈过程。

在Google内部,产品经理们都遵循这样一个规则:在没有数据之前,不要给出任何结论。由此可见,Google的企业使命已经融入了员工的日常工作中。Google正是充分利用了大数据的力量,顺利成为了对整张互联网举足轻重的枢纽节点,非常自然地实现了对互联网的垄断。

再举一个例子,9月27日Google发布了新版本的神经机器翻译系统(GoogleNeuralMachineTranslation,GNMT),宣称该系统的翻译质量接近人工笔译

大多数网友在实际测试过后,表示眼前一亮。与此同时,这也引起了某些翻译工作者的恐慌:「作为翻译看到这个新闻的时候,我理解了18世纪纺织工人看到蒸汽机时的忧虑与恐惧。」而这其实也是充分利用大数据的结果。

其实早在2005年,Google的机器翻译质量就让全世界从事自然语言处理的人震惊不已了:从来没有从事过机器翻译的Google,在美国国家标准技术研究所(NationalInstituteofStandardsandTechnology,NIST)的年度测评中遥遥领先。

在阿拉伯语到英语翻译的封闭测试集中,Google系统的BLUE评分为51.31%,领先第二名将近5%,而提高这5个百分点在过去需要研究5到10年。

Google究竟是做到的呢?除了Google一贯的行事风格——把该领域全世界最好的专家、南加州大学ISI实验室的弗朗兹-奥科(FranzOch)博士挖过来之外,最关键的还是Google手里握有改进机器翻译系统所需要的大数据。

从奥科2004年加入Google到2005年参加NIST测试,期间只有一年时间,如此短的时间只够他将在南加大的系统用Google的程序风格重新实现一遍,完全没有额外的时间做新的研究。而从上图中我们可以看到,Google和南加大系统的水平差了5到10年。

其中的秘密就在于:奥科在Google还是用的在南加大使用过的方法,但充分利用了Google在数据收集和处理方面的优势,使用了比其他研究机构多上万倍的数据,训练出一个机器翻译的六元模型(一般来讲N元模型的N值不超过3)。当奥科使用的数据是其他人的上万倍时,量变的积累导致了质变的发生,而这就是当今人工智能领域最权威的几位专家之一杰弗里-辛顿(GeoffreyHinton)教授所坚持的“多则不同”吧。

值得一提的是,SYSTRAN公司是一家使用语法规则进行翻译的企业,在科学家们还没有想到或者有条件利用统计的方法进行机器翻译之前,该企业在机器翻译领域是最领先的。但现在与那些采用了数据驱动的统计模型的翻译系统相比,它的翻译系统就显得非常落后了。

经过上述分析,对本小结的问题终于可以下一个较安全的结论:在当下的企业竞争中,相比于算法或数学模型,数据的重要性的确要大得多,即数据为王。

因为前者往往由学术界在几十年前就已经发现了,所有企业都可以加以利用,但是多维度的完备数据并不是每一个企业都拥有的。

今天很多企业在产品和服务的竞争,某种程度上已经是数据的竞争了,可以说没有数据就没有智能。因为从理论上讲,只要能够找到足够多的具有代表性的数据,就可以利用概率统计结果找到一个数学模型,使得它和真实情况非常接近,从而节省了大量人力成本或给予了用户更愉悦的体验。

总结

特斯拉已经积累的2.22亿英里行驶数据,以及未来将要积累的数据,对于他们研发Level4以上的无人驾驶汽车是非常有帮助的,特斯拉可能会最终会先Google一步实现量产。

目前出于商业化的考虑,已量产的特斯拉用“摄像头毫米波雷达超声波雷达”作为主要传感器,但是等到低成本的固态激光雷达性能更稳妥。我相信Musk肯定是会装上去的(有网友已经在加州的道路上拍到头上顶着激光雷达的特斯拉汽车偷偷在做测试了),因为这对于保证实现99.9999%的车辆行驶安全性是非常有帮助的。

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存