陀螺仪误差模型与加速度计类似,采用的标定方法是动态旋转的,将IMU置于单轴转台中,令每个轴向上、向下,并分别以50°/s、100°/s、150°/s、200°/s、250°/s的转速转动正反方向,并收集足够的数据。
陀螺仪的动态标定
除精确性外,MEMS陀螺的性能指标主要有:标度因数(与比例因子互为倒数)、标度因数非线性、零偏、零偏稳定性、零偏重复性。这些指标系统的反映了陀螺仪的性能,因此有必要对其进行相应的测试,掌握其具体的指标参数。
(3)温度影响因素
MEMS惯性器件在温度发生变化时,其精度会产生较大的差异,一般情况下,惯性器件的工作环境不可能是恒温环境,尤其是陀螺的精度受到严重影响,因此温度的影响不能忽略,以陀螺仪为例,置放惯性器件于恒温转台中试验,并在不同温度下收集数据。
微惯性器件的温度试验
(4)IMU产品化后主要影响因素
A.信噪比低
信噪比低会造成使用IMU的产品不敏感,因此最棘手的问题便是降噪。一般此种情况可利用小波降噪,对信号进行消噪实际上是抑制信号中的无用部分,增强信号中的有用部分的过程。
惯性器件常用的消噪过程为:a. 信号的小波分解,选择一个合适的小波并确定分解的层次,然后进行分解计算;b. 小波分解高频系数的阈值量化,对各个分解尺度下的高频系数选择一个阈值进行软阈值量化处理;c. 小波重构,根据小波分解的最底层低频系数和各层分解的高频系数进行一维小波重构。其中最关键的是如何选择阈值以及进行阈值量化处理,它直接关系信号消噪的质量。
B.漂移大/延迟大
对于信号延迟问题,MEMS的常用器件都有存在,在IMU产品中极为明显。国外研究机构提出利用惯性误差旋转调制技术,来解决延迟问题。惯性误差旋转调制技术实质上是一种误差自补偿技术,利用IMU周期性转动完成对惯性器件慢变误差的调制,是在现有器件精度的条件下实现更高导航精度的有效方法。采用误差调制技术的惯性导航系统结构发生了变化,旋转机构的存在导致陀螺仪和加速度计与载体不再固连,但解算依然采用捷联算法,因此这种惯性导航系统被称为旋转调制型捷联惯性导航系统。